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A Friendly Competition

Imagine a Kaggle competition with n competitors and a public scoring

algorithm. The competitors would like to participate and have a winner

declared, but would like to keep their proprietary algorithms and output

secret. How can we provide this cryptographic functionality?

Formalization: N-Party Private Circuits

To formalize the problem, we introduce a class of arithmetic circuits

known as n-party private, or N PP . A circuit A is in N PP if it contains

at most n disjoint subcircuits A1 . . . An such that each Ai is known only

to party i, all of which feed to a public connecting subcircuit Ap.

Figure 1. Example N-Party Private Circuit Representation

Here, we can think of each private sub-circuit as a competing algorithm

and the public connector as a common scoring algorithm.

Circuit Commitment Schemes

Traditionally, a circuit commitment between a prover P with a circuit A
and a verifier V works as follows

Figure 2. Circuit Commitment Scheme Depiction

There are a number of working commitment schemes, each with unique

pros/cons. In our work, we center ourselves around the methods used in

the Plonk Commitment scheme [3].

What is PACCMulE?

We are trying to create an analogous commitment scheme in this multi-

entity setting. Formally, we define a PACCMulE for a n-party private

circuit A =
⋃

i∈[n]∪{p} Ai is a tuple (Setup, Commit, Eval) where:

Setup(1λ, {N1 . . . , Nn, Np}) → pp: Sample public parameters.

Commit(pp, A ∈ AC, r ∈ R) → c ∈ C: Produce a commitment of A.

Eval(P1(pp, A1, Ap, r ∈ R, x ∈ X , y ∈ Y), . . . Pn(pp, An, Ap, r ∈ R, x ∈
X , y ∈ Y), V(pp, c, x, y)) → {0, 1}: Convince all parties that A(x) = y

Plonk Encoding

The Plonk scheme maps the pins of a circuit to a multiplicative groups

K = 〈γ〉 with order divisible by 3, and maps the gates to and Kg = 〈γ3〉.

Figure 3. Plonk Encoded Circuit

A circuit A is then defined with the following polynomials, which are in-

terpolated using Fast Fourier Transform (FFT):

Selector Polynomial: s(g ∈ Kg), returns 1 if gate g = + and 0 otherwise
Wiring Polynomial: w(k ∈ K) returns the pin that i is wired to

When A is run on an input x, a computation trace can be performed to

determine the values at each pin in K. The prover will interpolate these

values into a Value Polynomial p.

Proof of Functional Relation

In settings where a committed circuit is not fully known to the verifier,

such as [1], the verifier would like to be assured that what is being com-

mitted to is a function. In Plonk, this means convincing the verifier the

following hold for a committed circuit A = (w, s):

1. Permutation Check: w is a permutation

2. Selector Check: s is binary over Kg

3. Representative Check: The Union of the initial input pins and all gate

output pins is a representative set of W , the partition induced by w

4. Topological Sort: W can be topologically sorted

PACCMulE Objectives

Stated plainly, a PACCMulE is circuit commitment scheme with PFR for

any A ∈ N PP . Concretely this involves constructing a convincing proof

of the following claims for each j ∈ [n] ∩ {p}:

Ensure that A ∈ N PP
Ensure that Aj is committed correctly

Make additional checks for the PFR on A

Confirm that A(x) = y

Desired Security Properties

A secure PACCMulE has the following properties:

Committing: The tuple (Setup, Commit) is a hiding and binding

commitment scheme for the function space N PP .

Complete Eval: Eval will accept any (A, x, y, c, r), that satisfy the
relation Reval, which demands that:

A ∈ N PP ∧ A(x) = y ∧ c = Commit(pp, A, r)

Extractable Eval is an argument of knowledge for the relation

Reval(pp).
Honest Verifier n-Zero-Knowledge: Up to n-colluding dishonest
provers learn nothing about the components of the other provers,

other than the validity of A.

Polynomial Interactive Oracle Proofs

A Polynomial Interactive Oracle Proof, or PolyIOP, is an interactive protocol

where a prover has the power to grant polynomial oracle access to a

verifier. ApolyIOP for a relation is secure if it has the following properties:

1. Completeness: If an input satisfies the , then the protocol accepts

2. Soundness: If an input does not satisfy the , then the protocol rejects

with negligible error

3. Honest Verifier Zero Knowledge: A verifier learns nothing more of

prover secrets than the output of the protocol

It will suffice to construct a secure polyIOP that captures the PACCMulE

objectives. Then, we can make use of some handy derandomization tech-

niques [2] to compile the protocol into a single, non-interactive proof.

Constructed Protocols on Arbitrary Sets

To create a secure polyIOP for PACCMulE,we first construct the following

secure protocols. A large part of our contribution was getting these to

work over any subset I ⊆ K, where I may not have any clean structure

to take advantage of.

Zero: Check if a polynomial f (i) = 0 for all i ∈ I

Non-Zero: Check if a polynomial f (i) 6= 0 for all i ∈ I

Set Product: Check if the product of a polynomial over I is equal to

Generalized Multiset Equality: Images of two polynomials are the

same as multisets over an arbitrary subset I of subgroup K
Permutation: Check that a polynomial is a permutation over I

Permutation Composition: Check that two polynomials are equal on

cycles of a permutation

Geometric Sequence Test: Check that a polynomial has a geometric

progression

Representative Check: Perform the representative check of PFR on

the subcircuit defined over I

Expanded Discrete Log Comparison: Check that the discrete log of a

polynomial is greater than another across all of I

Topological Sort: Verify that the circuit can be topologically sorted

After constructing the above secure protocols, we are able to deploy

them and create a polyIOP for PACCMulE!

Implications on State of the Art

Reduction to N PP

In the general case, we may want to relax our multi-entity setting to

any arithmetic circuit comprised of at most n disjoint privately held sub-

circuits. As it turns out, circuits like these can be perfectly partitioned

into subcircuits ∈ N PP . So, PACCMuLE is able to provide functionality

in the general setting!

Broadening the State of the Art

The current state of the art circuit commitment schemes achieve func-

tionality for public circuits [3] and fully private circuits via PFR [1].

In our preceding project, PARCC: Partially Revealable Circuit Commit-

ments, we broaden the scope of this work to circuits that contain any

combination of public and private sub-circuits, such that private com-

ponents remain hidden while public components are revealed. In this

project we work along the other axis, creating commitment schemes for

any number of private proving entities.

Combining both of our summer research projects, we have exponentially

grown the class of circuits that can be committed to!

Future Research Directions

Shared Library Support

Arithmetic circuits have no way to compress repeating or shared archi-

tecture. One goal is to a commitment scheme that supports shared use,

which would have many real-world use cases.

Supporting Marlin Encoding

Marlin is another circuit commitment scheme with a much more elegant

PFR. Another goal of ours is to develop analogous PARCC and PACC-

MulE schemes from Marlin, which may lead to runtime and/or proof size

savings.
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